Schubert Calculus on the Grassmannian of Hermitian Lagragian Spaces

ثبت نشده
چکیده

We describe a Schubert like stratification on the Grassmannian of hermitian lagrangian spaces in C ⊕ C which is a natural compactification of the space of hermitian n × n matrices. The closures of the strata define integral cycles and we investigate their intersection theoretic properties. The methods employed are Morse theoretic.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Schubert Calculus on the Grassmannian of Hermitian Lagragian Spaces

We describe a Schubert like stratification on the Grassmannian of hermitian lagrangian spaces in C ⊕ C which is a natural compactification of the space of hermitian n × n matrices. The closures of the strata define integral cycles and we investigate their intersection theoretic properties. The methods employed are Morse theoretic.

متن کامل

Schubert Calculus on the Grassmannian of Hermitian Lagragian Spaces

The grassmannian of hermitian lagrangian spaces in C⊕C is natural compactification of the space of hermitian n× n matrices. We describe a Schubert like stratification on this space which has a Morse theoretic origin. We prove that these strata define closed subanalytic currents à la R. Hardt, generating the integral homology of this space, and then we investigate their intersection theoretic pr...

متن کامل

THE HONEYCOMB MODEL OF GLn(C) TENSOR PRODUCTS II: PUZZLES DETERMINE FACETS OF THE LITTLEWOOD-RICHARDSON CONE

The set of possible spectra (λ, μ, ν) of zero-sum triples of Hermitian matrices forms a polyhedral cone [H], whose facets have been already studied in [Kl, HR, T, Be] in terms of Schubert calculus on Grassmannians. We give a complete determination of these facets; there is one for each triple of Grassmannian Schubert cycles intersecting in a unique point. In particular, the list of inequalities...

متن کامل

GLn(C ) TENSOR PRODUCTS II: PUZZLES DETERMINE FACETS OF THE LITTLEWOOD-RICHARDSON CONE

The set of possible spectra ( ; ; ) of zero-sum triples of Hermitian matrices forms a polyhedral cone [H], whose facets have been already studied in [Kl, HR, T, Be] in terms of Schubert calculus on Grassmannians. We give a complete determination of these facets; there is one for each triple of Grassmannian Schubert cycles intersecting in a unique point. In particular, the list of inequalities d...

متن کامل

On a Bruhat-like Poset

We investigate the combinatorics and the topology of the poset of strata of a Schubert like stratification on the Grassmannian of hermitian lagrangian spaces in Cn ⊕ Cn. We prove that this poset is a modular complemented lattice, we compute its Möbius function and we investigate the combinatorics and the topology of its order intervals.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007